Supporting Information

First Total Synthesis of (-)-AL-2

Naoki Miyakoshi and Chisato Mukai*
Faculty of Pharmaceutical Sciences Kanazawa University
Takara-machi, Kanazawa 920-0934 Japan

Melting points are uncorrected. IR spectra were measured in CHCl₃. ¹H NMR spectra were taken in CDCl₃. CHCl₃ (7.26 ppm) was used as an internal standard for silyl compounds. TMS was employed as an internal standard for other compounds. ¹³C NMR spectra were recorded in CDCl₃ with CHCl₃ (77.00 ppm) as an internal standard. Commercially available dry CH₂Cl₂ and THF were employed for reactions. Et₃N was distilled from CaH₂ prior to use. All reactions were carried out under nitrogen atmosphere otherwise stated. Silica gel (silica gel 60, 230-400 mesh, Merck) was used for chromatography. Organic extracts were dried over anhydrous Na₂SO₄.

Compound (-)-11: A solution of PivCl (1.19 mL, 9.70 mmol) in CH₂Cl₂ (12 mL) was added to a solution of 10 (3.00 g, 9.20 mmol), Et₃N (3.67 mL, 27.6 mmol) and DMAP (0.11 g, 0.92 mmol) in CH₂Cl₂ (80 mL) at −78 °C over a period of 3 h. After being stirred for 16 h at the same temperature, the reaction mixture was quenched by addition of water and extracted with CH₂Cl₂. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane-AcOEt (1:1) to afford the crude secondary alcohol. To a solution of the crude alcohol and imidazole (1.88 g, 27.6 mmol) in DMF (4.5 mL) was added TBDPSCl (3.56 mL, 13.8 mmol) at room temperature. The reaction mixture was stirred at 50 °C for 42 h, quenched by addition of water, and extracted with Et₂O. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a

short pad of silica gel with hexane-AcOEt (1:1) to afford the crudeTBDPS-protected product. To a solution of the crude product in Et₂O (90 mL) was added EtMgBr in Et₂O (1.00 M, 92.0 mL, 92.0 mmol) at room temperature, and the reaction mixture was stirred for 22 h, quenched by addition of water, and extracted with Et₂O. The extract was washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (10:1) afforded (-)-11 (3.94 g, 76%) as a colorless oil: $\left[\alpha\right]^{27}_{D}$ –18.0 (*c* 1.00, CHCl₃); IR 3612 cm⁻¹; ¹H NMR δ 7.68-7.64 (m, 4H), 7.43-7.32 (m, 6H), 7.28-7.16 (m, 5H), 4.51, 4.36 (AB-q, 2H, J=11.9 Hz), 3.95-3.83 (m, 3H), 3.62-3.57 (m, 2H), 3.49 (m, 1H), 1.06 (s, 9H), 0.89 (s, 9H), 0.05 (s, 6H); ¹³C NMR δ 138.45, 135.87, 135.74, 133.71, 133.32, 129.83, 129.19, 127.69, 127.64, 127.44, 81.83, 72.65, 72.56, 63.36, 62.30, 26.99, 19.30, 18.21, -5.44, -5.48; MS m/z 564 (M⁺, 1.1). HRMS calcd for C₃₃H₄₈O₄Si₂ 564.3091, found 564.3095.

Compound (-)-12: To a solution of (-)-11 (400 mg, 0.71 mmol) in CH₂Cl₂ (7.0 mL) was added Dess-Martin periodinane (470 mg, 1.01 mmol) at 0°C. The reaction mixture was stirred at room temperature for 1 h, poured into saturated aqueous solution of Na₂S₂O₃ and NaHCO₃ (1:1), and extracted with Et₂O. The extract was washed with water and brine, dried, and concentrated to dryness. The crude aldehyde was used directly for the next reaction. To a solution of PPh₃ (0.81 g, 3.12 mmol) in CH₂Cl₂ (4.0 mL) was added CBr₄ (0.51 g, 1.56 mmol) at 0°C, and the reaction mixture was stirred for 30 min. A solution of crude aldehyde in CH₂Cl₂ (3.0 mL) was then added to a solution of the ylide in CH₂Cl₂ solution, thus prepared, at 0°C and stirring was continued for 5 min at the same temperature. The reaction mixture was quenched by addition of saturated aqueous NaHCO₃ and the CH₂Cl₂ solution was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane-AcOEt (5:1) to give the crude dibromoolefin derivative. To a solution of the dibromoolefin derivative in THF (10 mL) was added n-BuLi in hexane (1.36 M, 4.40 mL, 5.98 mmol) at -78 °C, and the reaction mixture was stirred for 10 min at the same temperature. The reaction mixture was quenched by addition of water and extracted with Et₂O, which was washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (10:1)) afforded (-)-12 (297 mg, 72%) as a colorless oil: $[\alpha]_{D}^{25}$ -0.5 (c 1.00, CHCl₃); IR 3306, 2120 cm⁻¹; ¹H NMR 7.74-7.71 (m, 2H), 7.66-7.64 (m, 2H), 7.44-7.30 (m, 6H), 7.27-7.20 (m, 5H), 4.54 (s, 2H), 4.51 (dd, 1H, J = 4.9, 2.0 Hz), 4.06 (dd, 1H, J = 10.7, 2.6 Hz), 3.88 (dd, 1H, J = 10.7, 7.3 Hz), 3.48 (ddd, 1H, J = 7.3, 4.9, 2.6 Hz), 2.27 (d, 1H, J = 2.0 Hz), 1.07 (s, 9H), 0.95 (s, 9H), 0.04 (s, 6H); ¹³C NMR δ 138.62, 136.06, 135.83, 133.08, 129.83, 129.72, 128.10, 127.66, 127.62, 127.42, 127.30, 82.34, 82.18, 74.05, 72.89, 63.52, 63.36, 31.57, 26.87, 25.99, 25.90, 22.64, 19.27, 18.24, 14.13, 9.40, -5.32, -5.41; FABMS m/z 581 (M+1, 1.1). Anal. Calcd for $C_{34}H_{46}O_3Si_2$: C, 73.07; H, 8.30. Found: C, 72.71, H, 8.57.

Compound (-)-13: PPTS (570 mg, 2.27 mmol) was added to a solution of (-)-12 (1.15 g, 2.06 mmol) in MeOH (10 mL) at room temperature, and the reaction mixture was stirred for 24 h. MeOH was evaporated off and the residue was taken up in AcOEt, which was washed with saturated aqueous NaHCO₃, water, and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (5:1) afforded (-)-13 (683 mg, 75%) as a colorless oil: $[\alpha]^{27}_{D}$ –5.7 (c 1.00, CHCl₃); IR 3587, 3306, 2120 cm⁻¹; ¹H NMR 7.75-7.71 (m, 2H), 7.69-7.65 (m, 2H), 7.47-7.33 (m, 6H), 7.27-7.14 (m, 5H), 4.56 (dd, 1H, J = 5.3, 2.0 Hz), 4.47, 4.30 (AB-q, 2H, J = 11.9 Hz), 4.01-3.82 (m, 2H), 3.52-3.47 (m, 1H), 2.37 (d, 1H, J = 1.7 Hz), 1.09 (s, 9H); ¹³C NMR δ 137.77, 136.05, 135.81, 132.83, 132.61, 130.03, 129.92, 128.41, 127.99, 127.82, 127.76127.55, 81.53, 80.97, 74.97, 72.72, 63.72, 61.85, 26.85, 19.21; FABMS m/z 445 (M⁺+1, 1.1). Anal. Calcd for $C_{28}H_{32}O_3Si$: C, 75.63; H, 7.25. Found: C, 75.55, H, 7.26.

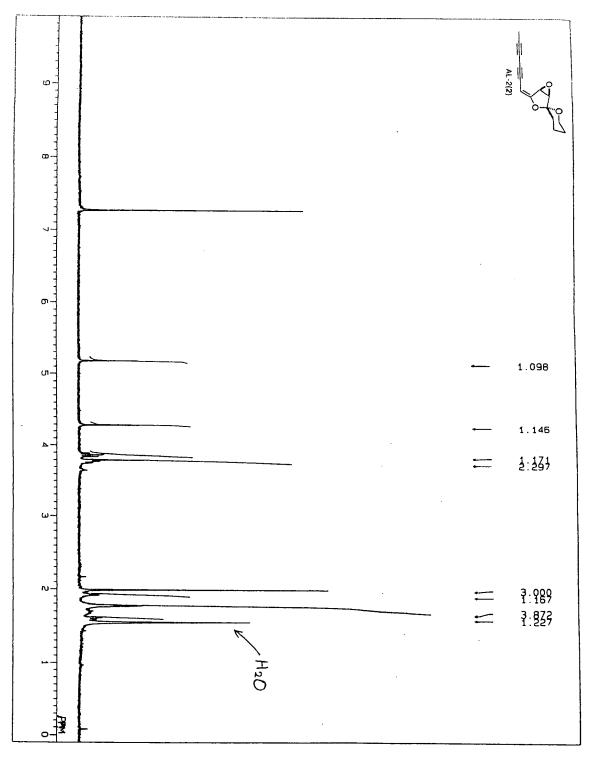
Compound (+)-14: To a solution of (-)-13 (100 mg, 0.22 mmol) in CH₂Cl₂ (2.2 mL) was added Dess-Martin periodinane (146 mg, 0.33 mmol) at 0°C. The reaction mixture was stirred at room temperature for 1 h, poured into saturated aqueous solution of Na₂S₂O₃ and NaHCO₃(1:1), and extracted with Et₂O. The extract was washed with water and brine, dried, and concentrated to dryness. The crude aldehyde was used directly for the next reaction. A solution of Grignard reagent in Et₂O was prepared as follows; To a suspension of magnesium powder (440 mg, 18.3 mmol) in Et₂O (4.0 mL) was added 4-tert-Butyldimethylsioxybutyl iodide (2.00 g, 6.37 mmol) in Et₂O (8.00 mL). The mixture was stirred vigorously at room temperature for 30 min. Grignard reagent (0.50 M, 1.32 mL, 0.66 mmol), thus prepared, was added to a solution of crude aldehyde in CH₂Cl₂ (3.0 mL) at -78°C. After being stirred for 20 min, the reaction mixture was quenched by addition of saturated aqueous NH₄Cl and extracted with Et₂O. The extract was washed with water and brine, dried, and concentrated to dryness. To a solution of the residue in CH₂Cl₂ (4.0 mL) was added Dess-Martin periodinone (146 mg, 0.33 mmol) at 0°C. The reaction mixture was stirred at room temperature for 1 h, poured into saturated aqueous solution of Na₂S₂O₃

and NaHCO₃(1:1), and extracted with Et₂O. The extract was washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (30:1) afforded (+)-14 (102 mg, 74%) as a colorless oil: [α]²⁸_D +33.6 (c 1.00, CHCl₃); IR 3306, 2122, 1716 cm⁻¹; ¹H NMR δ 7.75-7.66 (m, 4H), 7.43-7.24 (m, 11H), 4.71 (dd, 1H, J=4.9, 2.4), 4.58, 4.56 (AB-q, 2H, J=11.7), 3.89 (d, 1H, J=4.9), 3.57 (t, 2H, J=6.8), 2.66 (m, 1H), 2.57 (m, 1H), 2.29 (d, 1H, J=2.4) 1.61-1.45 (m, 4H), 1.04 (s, 9H), 0.88 (s, 9H), 0.03 (s, 6H); ¹³C NMR δ 208.84, 137.25, 136.10, 135.87, 132.87, 132.67, 129.88, 129.70, 128.34, 127.92, 127.85, 127.60, 127.33, 86.72, 81.12, 75.78, 73.41, 64.64, 62.88, 39.95, 32.28, 26.78, 25.93, 19.25, 18.30, -5.32; MS m/z 628 (M⁺+1, 1.4). Anal. Calcd for C₃₈H₅₂O₄Si₂: C, 72.56; H, 8.33. Found: C, 72.20, H, 8.53.

Compound (-)-15: p-TsOH was added to a solution of (+)-14 (61.0 mg, 0.10 mmol) in THF:H₂O (20:1, 3.0 mL) at room temperature. The reaction mixture was stirred at the same temperature for 4h, quenched by addition of saturated aqueous NaHCO3, and extracted with Et,O. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane-AcOEt (1:1) to afford the crude alcohol. A solution of Pd₂(dba)₃·CHCl₃ (2.5 mg, 0.002 mmol) in MeOH (3.5 mL) was stirred under a CO atmosphere at room temperature for 30 min, to which a solution of the crude alcohol and benzoquinone (217 mg, 1.94 mmol) in MeOH (1.5 mL) was added. After stirring for 48 h, MeOH was evaporated off, and the residue was taken up in Et₂O, which was successively washed with saturated aqueous NaS₂O₃, saturated aqueous NaHCO₁, water, brine, dried, and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (30:1) afforded (-)-15 (23.0 mg, 41%) as a colorless oil: $[\alpha]^{26}$ -75.0 (c 1.00, CHCl₃); IR 1707, 1659 cm⁻¹; ¹H NMR 7.95-7.93 (m, 2H), 7.69-7.66 (m, 2H), 7.49-7.32 (m, 6H), 7.24-7.19 (m, 3H), 6.97-6.95 (m, 2H), 5.42(s, 1H), 5.39 (s, 1H), 3.98 (m, 1H), 3.77 (m, 1H), 3.70 (s, 2H), 3.61 (s, 1H), 3.31 (s, 3H), 1.95-1.56 (m, 6H), 1.03 (s, 9H); 13 C NMR δ 173.64, 166.95, 137.63, 136.62, 135.99, 133.92, 133.29, 129.89, 129.39, 128.10, 127.68, 127.40, 127.15, 127.02, 110.77, 93.71, 86.05, 73.56, 70.95, 62.39, 50.60, 28.73, 26.72, 24.77, 19.37, 19.10; FABMS m/z 573 (M+1, 1.1). FABHRMS calcd for $C_{34}H_{41}O_6Si$ 573.2672, found 573.2640.

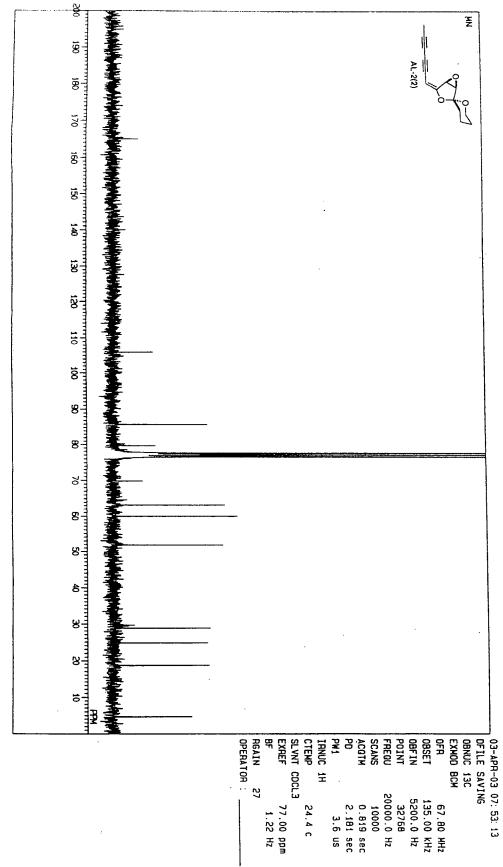
Compound (-)-19: A solution of DIBAL-H in hexane (1.00 M, 0.50 mL, 0.50 mmol) was added to a solution of (-)-15 (79.0 mg, 0.14 mmol) in CH₂Cl₂ (3.0 mL) at −78℃. The mixture was stirred for 30 min, quenched by addition of saturated aqueous Na₂SO₄, and filtered off. The filtrate was concentrated to leave the residual oil, which was passed through a short pad of silica gel with hexane-AcOEt (2:1) to afford the crude alcohol. A solution of lithium tert-butylbiphenylide in THF was prepared as follows: Lithium (20.0 mg, 2.85 mmol) was added to a solution of p, p'-di-tert-butylbiphenyl (620 mg, 2.38 mmol) in THF (14 mL) at room temperature. The mixture was stirred vigorously at room temperature until dark green radical anion was developed, at which time the reaction mixture was cooled in ice bath. Stirring was continued at 0 °C for 4h. Thus prepared solution of LiDBB in THF was added to a solution of the crude alcohol in THF (3.0 mL) at -78 ℃ until the reaction mixture was turned to deep green. After being stirred for 10 min at -78 ℃, the reaction mixture was quenched by addition of water and extracted with AcOEt. The extract was washed with brine, dried, and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (1:1) afforded (-)-19 (45.0 mg, 72%) as colorless needles: mp. 178.5-179.5 °C (hexane- AcOEt); $[\alpha]_{D}^{24}$ -71.6 (c 0.74, THF); IR 3311, 3177, 1699 cm⁻¹; ¹H NMR 7.80-7.74 (4H, m) 7.48-7.41 (m, 6H), 5.25 (dt, 1H, J = 1.3, 7.9 Hz), 4.58 (br-s, 1H), 4.14-3.68(m, 5H), 1.85-1.60(m, 6H), 1.06 (s, 9H); ¹³C NMR d 158.51, 136.03, 135.97, 133.27, 132.86, 130.22, 130.04, 127.97, 127.80, 107.30, 101.96, 80.87, 62.21, 58.56, 28.19, 26.78, 24.89, 19.36, 19.00; MS m/z 454 (M⁺, 0.1). HRMS calcd for C₂₆H₃₄O₅Si 454.2175, found 454.2174.

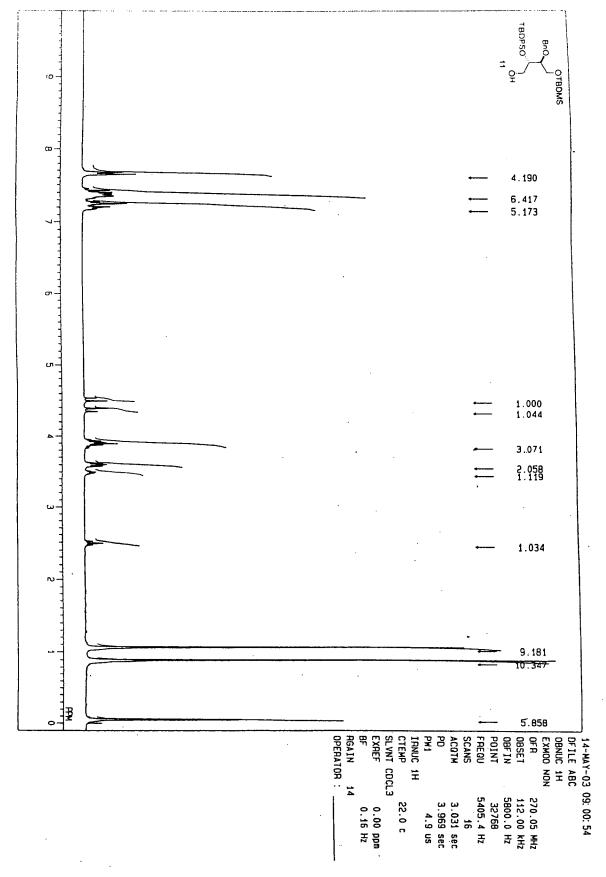
Compound (-)-22: A suspension of (-)-19 (28.0 mg, 0.62×10^{-1} mmol) and chemical manganese dioxide²¹ (87.0 mg, 1.23 mmol) in CH₂Cl₂ (5.0 mL) was stirred at room temperature for 1 h. The mixture was filtered off and the filtrate was concentrated to leave the crude aldehyde. To a solution of TMSCLi(N₂) in THF (1.0 mL), prepared from reaction of TMSCHN₂ in hexane (1.50 M, 1.00 mL, 1.50 mmol) and *n*-BuLi in hexane (1.43 M, 0.75 mL, 1.10 mmol) at -78 °C for 30 min, was added a solution of the crude aldehyde in THF (1.5 mL). The reaction mixture was stirred at -78 °C for 30 min and then at 0 °C for 30 min. The reaction mixture was quenched by addition of water and extracted with Et₂O, which was washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (5:1) afforded (-)-22 (23.3 mg, 84%) as a colorless oil: $[\alpha]_{D}^{25} -80.7$ (c 0.44, CHCl₃); IR 3568, 3308, 2110, 1655 cm⁻¹; ¹H NMR d 7.82-7.78 (m, 4H), 7.46-7.37 (m, 6H), 5.18 (d, 1H, J = 3.0 Hz), 4.71 (s, 1H),

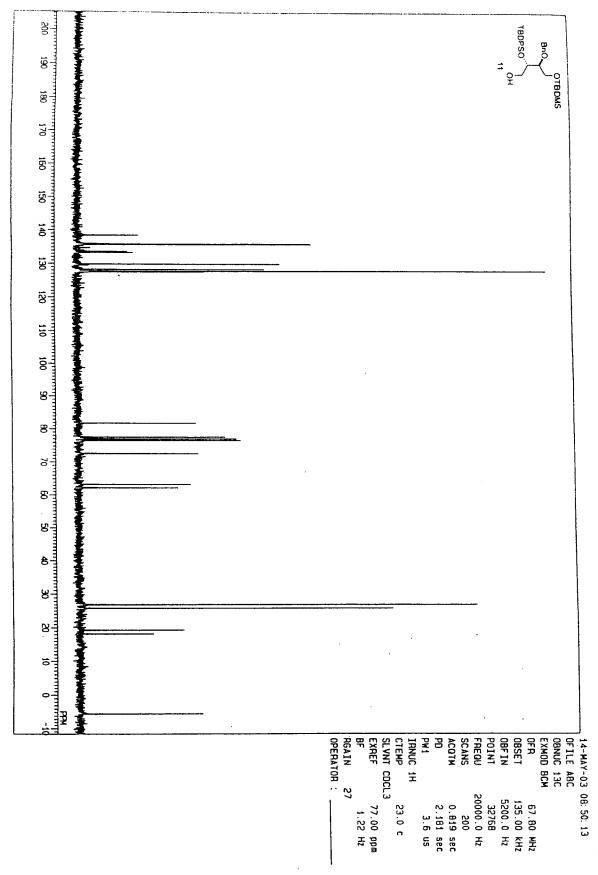

3.93 (dt, 1H, J = 3.4, 11.7 Hz), 3.75 (s, 1H), 3.73 (m, 1H), 2.77 (d, 1H J = 3.0 Hz), 1.82-1.48 (m, 6H), 1.10 (s, 9H); ¹³C NMR d 168.82, 136.30, 136.14, 134.02, 133.03, 129.90, 129.81, 127.62, 127.58, 109.47, 82.80, 80.47, 80.31, 80.23, 78.76, 62.45, 28.09, 26.90, 24.73, 19.64, 18.87; MS m/z 448 (M⁺, 3.4). HRMS calcd for $C_{27}H_{32}O_4Si$ 448.2070, found 448.2073.

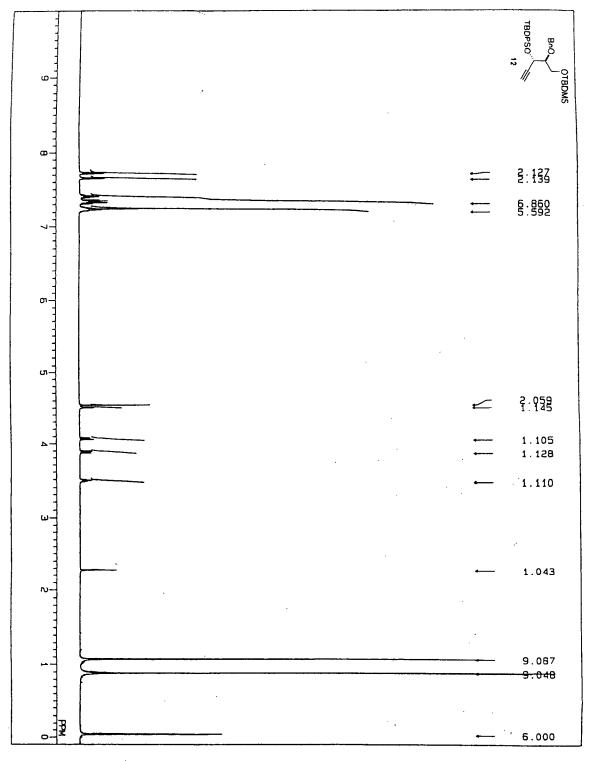
Compound (+)-23: BzCl (0.05 mL, 0.42 mmol) was added to a solution of (-)-22 (6.20 mg, 0.14 x 10⁻¹ mmol) in pyridine (1.5 mL) at room temperature. After being stirred for 20 min, the reaction mixture was quenched by addition of water and extracted with Et₂O, which was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane-AcOEt (30:1) to afford the crude benzoate. To a solution of crude benzoate in THF (6.0 mL) was added TBAF xH₂O (10.0 mg) and the reaction mixture was stirred for 4 h at room temperature, quenched by addition of water, and extracted with Et₂O. The extract was washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (2: 1) afforded (+)-23 (4.10 mg, 95%) as a colorless oil: [α]²⁶_D +38.4 (c 0.37, CHCl₃); IR 3308, 2108, 1728, 1657 cm⁻¹; ¹H NMR 8.03-7.99 (m, 2H), 7.62-7.57 (m, 1H), 7.48-7.42 (m, 2H), 5.30 (s, 1H), 5.22 (m, 1H), 4.80 (d, 1H, J = 9.9 Hz), 3.98-3.78 (m, 2H), 3.04-3.01 (m, 2H) 1.85-1.60(m, 6H); ¹³C NMR δ 169.29, 164.89, 133.64, 129.87, 128.93, 128.55, 109.60, 83.85, 80.34, 79.64, 78.89, 74.54, 62.70, 27.60, 24.44, 18.53; MS m/z 314 (M⁺, 2.8). HRMS calcd for C₁₈H₁₈O₅ 314.1154, found 314.1157.

Compound (+)-25: CuI (1.0 mg, 0.57×10^2 mmol) was added to a solution of (+)-23 (5.9 mg, 0.19×10^{-1} mmol) and 1-propynyl iodide (0.20 x 10^{-1} mL, 0.19 mmol) in pyrrolidine (1.0 mL) at room temperature. After being stirred for 1.5 h, the reaction mixture was quenched by addition of water and extracted with Et₂O, which was washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (3:1) afforded (+)-25 (4.00 mg, 60%) as a colorless oil: $[\alpha]^{26}_{D}$ +183.0 (c 0.092, CHCl₃); IR 3547, 2142, 1728, 1649 cm⁻¹; ¹H NMR d 8.03-7.98 (m, 2H), 7.60 (m, 1H), 7.48-7.42 (m, 2H), 5.29 (s, 1H), 5.24 (d, 1H, J = 1.0 Hz), 4.76 (d, 1H, J = 9.9 Hz), 3.92 (dt, 1H, J = 3.3, 10.9 Hz), 3.80 (m, 1H), 2.98 (d, 1H, J = 9.9 Hz), 1.95 (d, 3H, J = 1.0 Hz), 1.92-1.58 (m, 6H); ¹³C NMR 170.70, 164.89, 133.64, 129.86, 128.93, 128.55, 109.86, 84.14, 80.06, 79.68, 77.42, 74.60, 69.66, 67.95, 64.65, 62.77, 27.62, 24.43, 18.54, 4.58; MS m/z 352 (M⁺, 14.5). HRMS calcd for $C_{21}H_{20}O_5$ 352.1311,

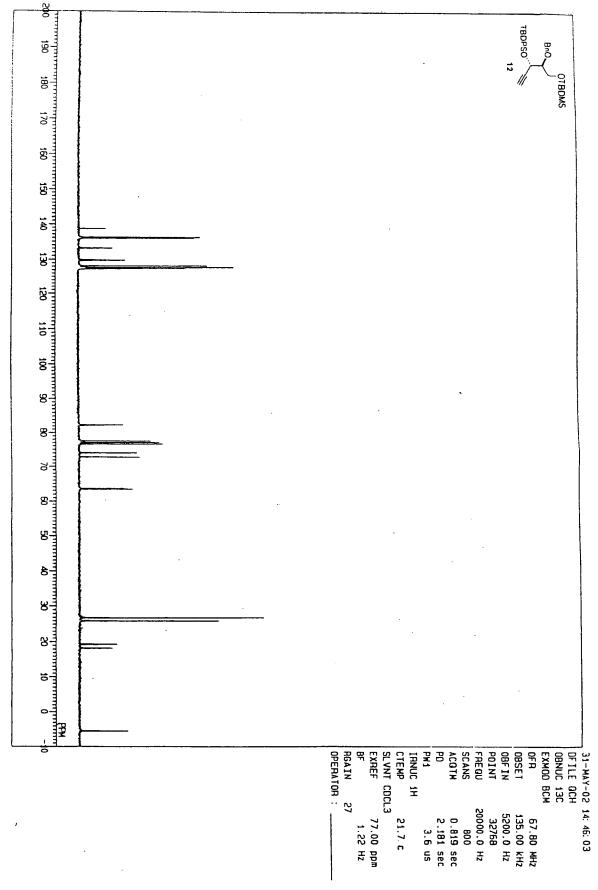

found 352.1310.

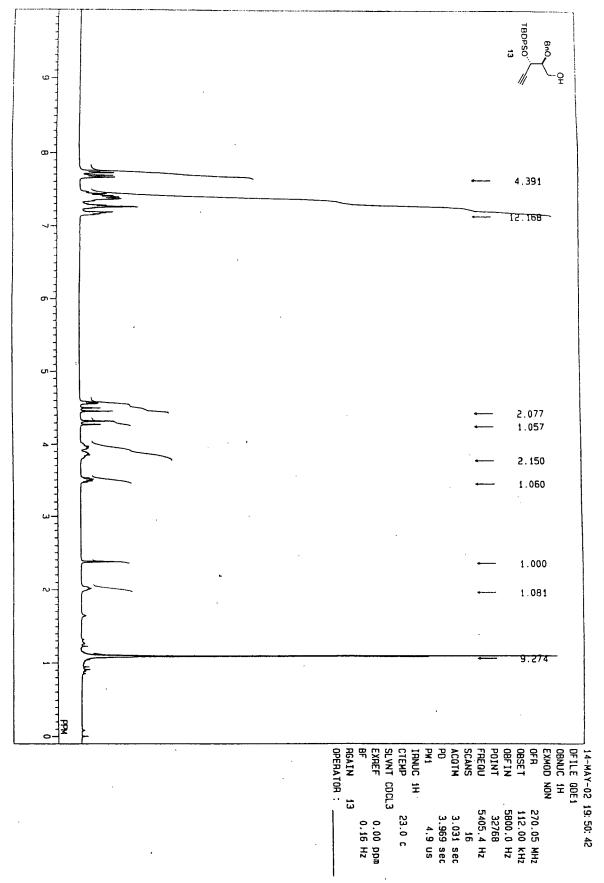

(-)-AL-2 (2): MsCl (0.87 x 10^2 mL, 0.11 mmol) was added to a solution of (+)-25 (4.00 mg, 0.11 x 10^{-1} mmol), Et₃N (0.28 x 10^{-1} mL, 0.20 mmol), and DMAP (0.80 mg, 0.67 x 10^{-2} mmol) in CH₂Cl₂ (0.5 mL) at 0°C. After being stirred for 5 min, the reaction mixture was quenched by addition of water and extracted with CH₂Cl₂, which was washed with water and brine, dried, and concentrated to dryness. The crude methanesulfonate was used directly for the next reaction. To a solution of the residue in MeOH (1.5 mL) was added K₂CO₃ (15.1 mg 0.11 mmol) and the reaction mixture was stirred for 1 h. MeOH was evaporated off and the residue was taken up in AcOEt, which was washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (10 : 1) afforded (-)-2 (2.1 mg, 79%) as a colorless oil: $[\alpha]^{27}$ _D – 26.6 (c 0.14 CHCl₃) (lit. ^{2(b)} $[\alpha]^{20}$ _D – 14 (c 0.5, CHCl₃)); IR 2143, 1655 cm⁻¹; ¹H NMR 5.18 (s, 1H), 4.29 (d, 1H, J = 2.5 Hz), 3.87 (dt, 1H, J = 3.0, 11.2 Hz), 3.80 (d, 1H, J = 2.5 Hz), 3.77 (m, 1H), 1.99 (s, 1H), 1.93-1.90 (m, 1H), 1.79-1.58 (m, 5H); ¹³C NMR 164.91, 105.91, 85.86, 79.61, 69.83, 63.22, 59.97, 51.92, 28.81, 24.76, 18.65, 4.62; MS m/z 230 (M⁺, 13.8). HRMS calcd for C₁₄H₁₄O₃ 230.0943, found 230.0945.

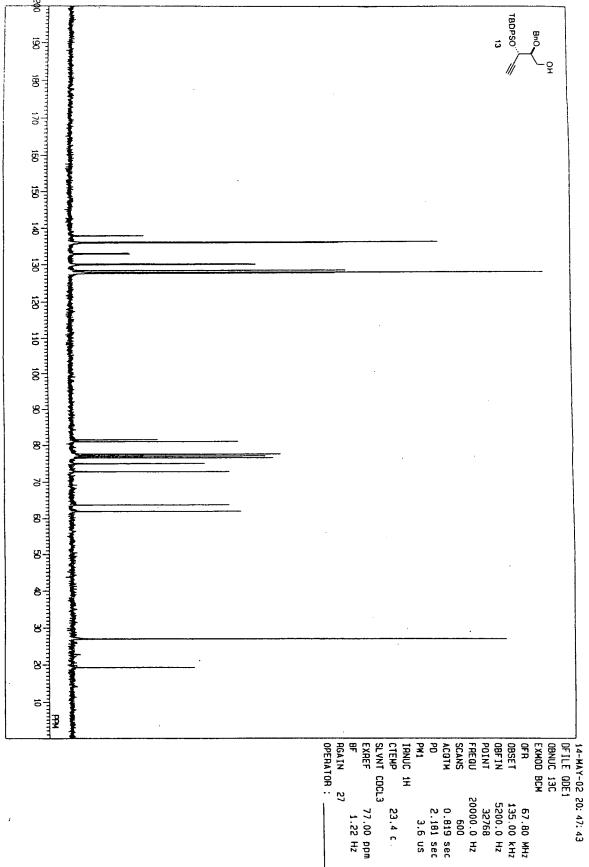


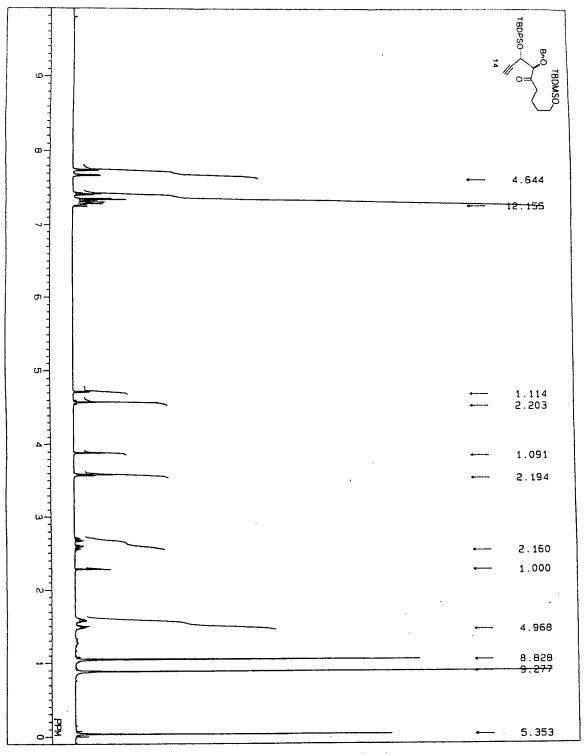

X X	RGAIN	딱	EXREF	SLVNT	TEMP.	IAAPW	IÁATN	IAFIN	P¥1	В	ACQTM	SCANS	FREQU	POINT	OBF IN	OBNUC	EXMOD	COMNT	DFILE	02-APA
5001.5990 Hz 620.8074 Hz	24	0.10 Hz	7.26 ppr	CDCL3	27.0 c	50 us	0	10157.0 Hz	3.9 us	. 00	2.04B se	-	8000.0 нг	32768	10989.5 Hz	Ĭ	SGNON	500MHZ	DU4:	7-03 20: 39: 05

© 2003 American Chemical Society, Org. Lett., Miyakoshi ol0300569 Supporting Info Page 9



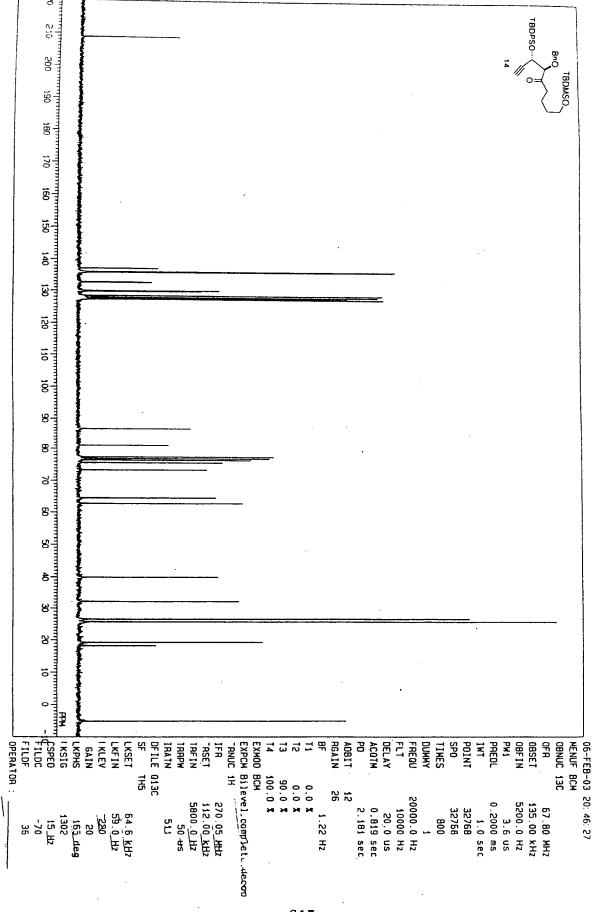


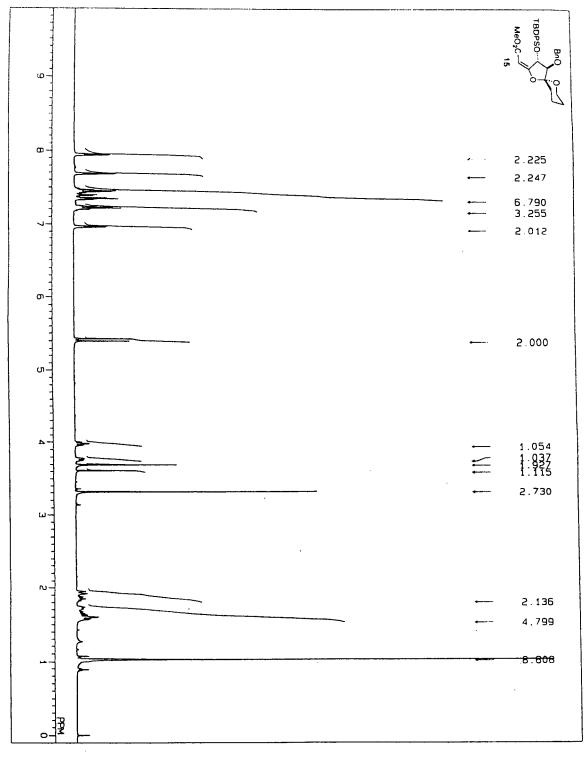




11-AUG-97 22: 03: 19
DFILE DU4:
COMNT 500MHZ
EXMOD SGNON
OBNUC 1H
OBFIN 10989.5 Hz
POINT 32768
FREGU 8000.0 Hz
SCANS 16
ACGTM 2.048 Sec
PM 3.000 Sec
PM 3.9 US
IRFIN 10157.0 Hz
IRATN 0
IRATN 0
IRATN 50 US
TEMP 27.0 C
SLVNT CDCL3
EXHEF 0.10 Hz
R6AIN 13
XE 5001.5990 Hz
XS 604.8804 Hz

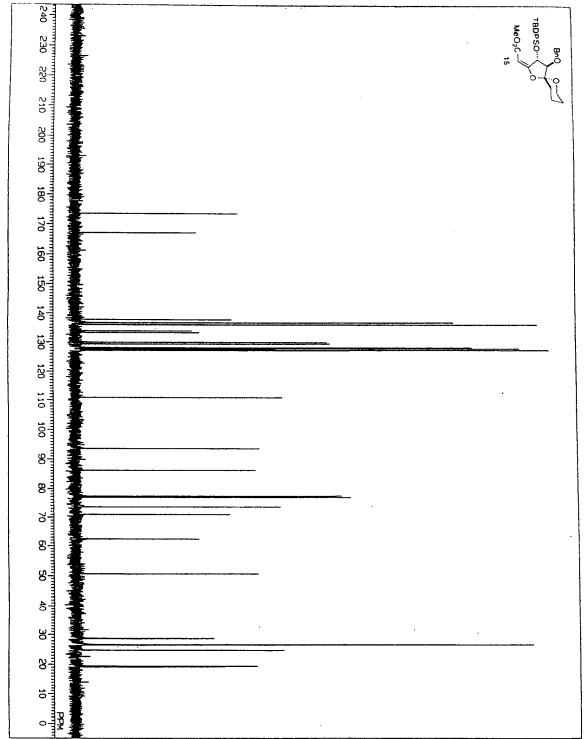
17-MAY-02 00: 11: 01

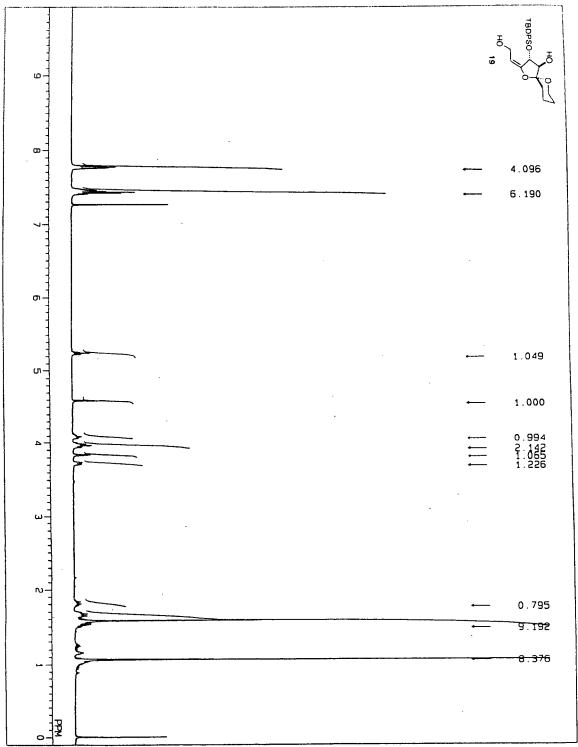

DFILE DU4:


COMNT 500MHZ

EXMOD SGNON

OBNUC 1H


OBFIN 10989.5 Hz
POINT 32768
FREGU 8000.0 Hz
SCANS 16
ACGTM 2.048 sec
PD 3.000 sec
PM1 3.9 Us
IAFIN 10157.0 Hz
IARPW 50 Us
TEMP. 27.0 C
SLVNT CDCL3
EXREF 0.10 Ppm
BF 0.10 15990 Hz
RGAIN 14
XE 5001.5990 Hz



OBFUCE EXMODE OBFUCE POINT POINT PECON POINT POI	DFILE COMNT EXMOD
ÜN IĞ	9-03 18: 54: 03 DU4: 500MHZ SGNON

@ 2003 American Chemical Society, Org. Lett., Miyakoshi ol
0300569 Supporting Info Page 19

XE XE	EXAEF BF	Ž,	IAAPW	IRATN	Ξ	PW1	B	ACOTM	SCANS	Θ	Z	FI	OBNUC	XMO	Ī	$\overline{}$	04-FEB
31 31250.0000 Hz 0.0000 Hz	0.77 Hz	CL3			10157.0 Hz	<u>_</u>	0.700 sec	4	200	31250.0 Hz	53	15308.7 Hz	130	SGBCM	Ω̈	S	3-03 23: 24: 02

11-FEB-03 12: 1B: 35

DFILE DU4:

COMNT 500MHZ

EXMOD SGNON

OBNUC 1H

OBFIN 10989.5 Hz

POINT 32768

FREGU 8000.0 Hz

SCANS 16

ACGTM 2.048 SEC

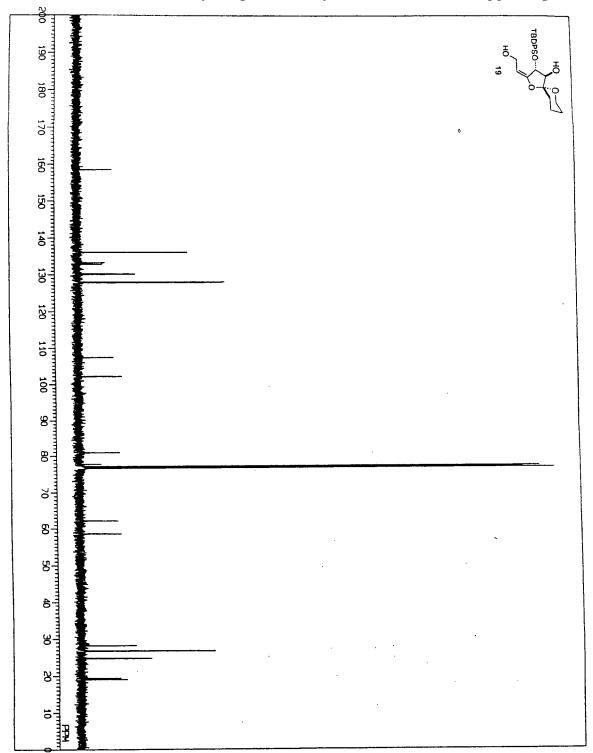
PD 3.000 SEC

PM1 3.9 US

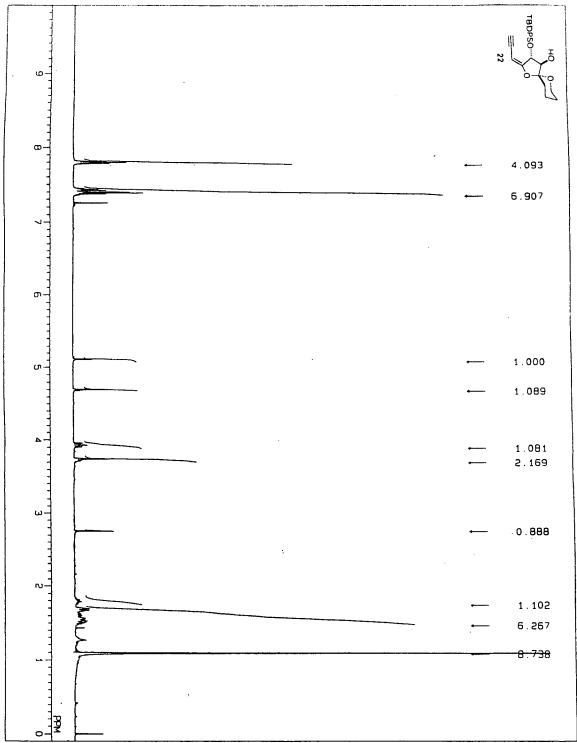
IRFIN 10157.0 Hz

IRFIN 5001.590 Hz

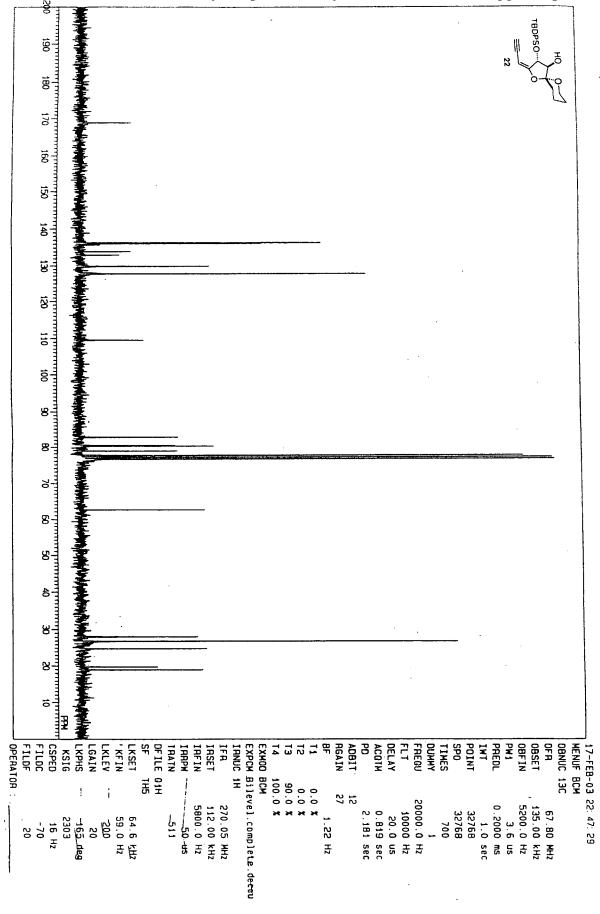
RGAIN 22

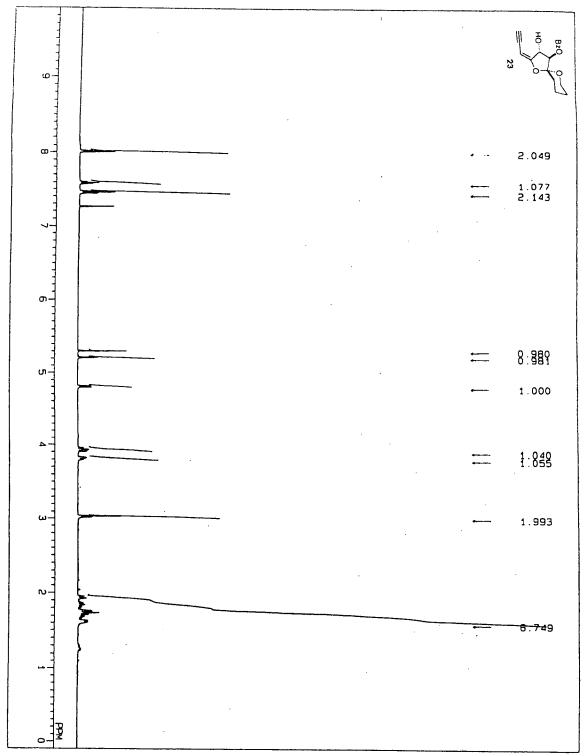

XE 5001.5990 Hz

NT CDCL3

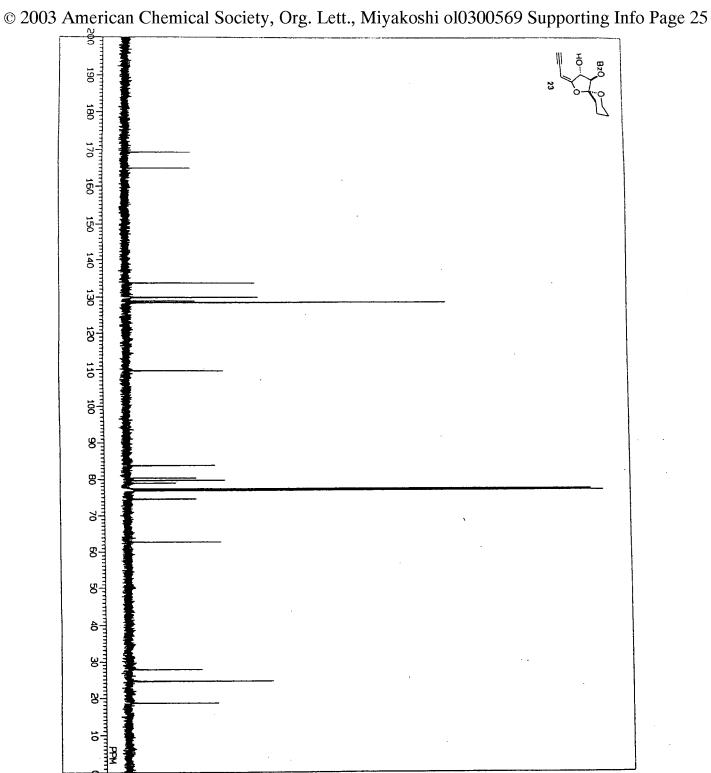

EXREF 0.15990 Hz

RGAIN 22

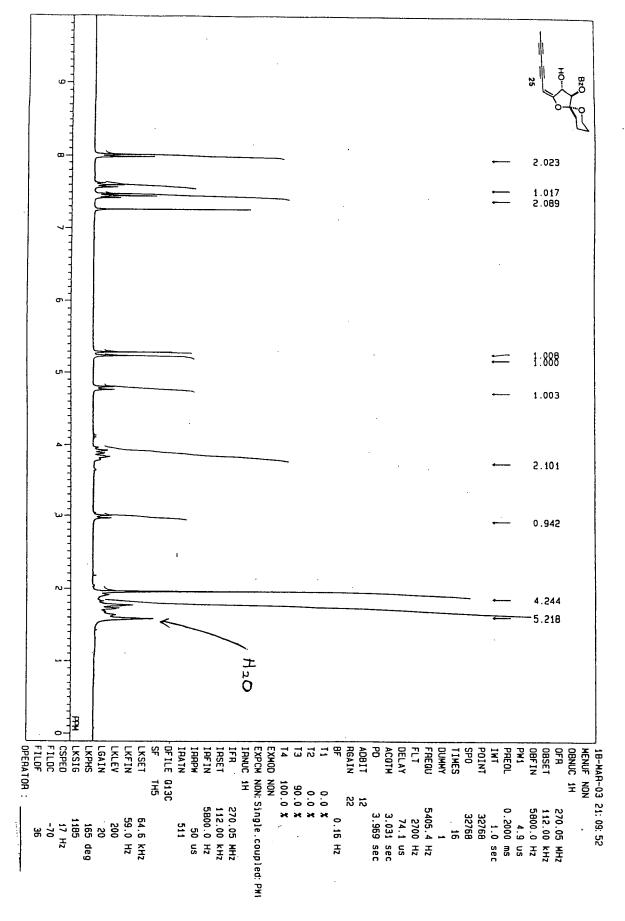

XE 5001.5990 Hz

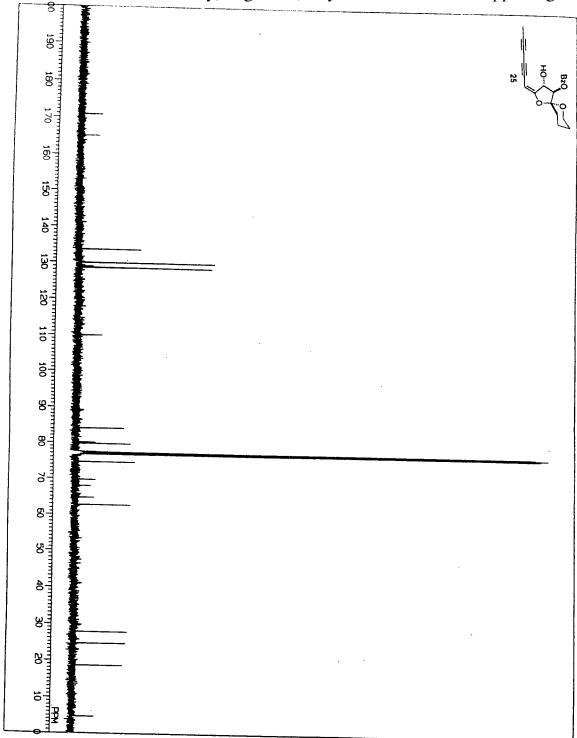


XS	Æ	AGAIN	۴	EXREF	SLVNT	TEMP.	IARPW	IAATN	IAFIN	PW1	В	ACGTM	SCANS	FREQU	POINT	OBF IN	OBNUC	EXM00	COMNT	DF ILE	11-FEB
21.270	25153.0600	N	0.77		CDCL3	С	50	25	10157.0	•	0	4	1000	31250.0	ū	15308.7	130	SGBCM	TH5: 13C-S/N-	CSN	1-03 12: 48: 57
Ηz	H ₂		Ηz	ppn			S		Ηz	S	sec	sec		Ηz		Ηz			•		•



XE XE	D	TEMP.		IRATN	PW1	PO	ACQTM	SCANS	FREQU	7	08F IN	OBNUC	EXMOD	COMNT	DF ILE	17-FEB
18 5001.5990 Hz 617.0874 Hz	0.00 ppm 0.10 Hz)	5	10157.0 Hz 0	.9	•	2.048 sec	16	B000.0 Hz	32768	10989.5 Hz	Ħ	SGNON	500MHZ	DU 4:	1-03 18: 47: 19


XS	Æ	AGAIN	略	EXREF	SLVNT	TEMP.	IARPW	IRATN	IAFIN	PW1	P0	ACOTM	SCANS	FREQU	POINT	08F:IN	OBNUC	EXMOD	COMNT	OF I LE	21-FE
620.3191 Hz	1.5990	21	0.10 Hz	7.26 ppm	CDCL3	27.0 c	50 us	0	10157.0 Hz	3.9 us	3.000 sec	2.048 sec	L	8000.0 Hz	32768	10989.5 Hz	Ï	SGNON	500MHZ	DU4:	B-03 02: 20: 10
92	1																				



COMNT TH5: 13C-S/N-EXMOD SGBCM

OBMUC 13C

OBFIN 15308.7 H
POINT 65536
FREGU 31250.0 H
SCANS 1.049 SI
PO 0.700 SI
PM1 10157.0 H
IRFIN 10157.0 H
IRATN 25
IRATN 25
IRAPW 27.0 C
SLVNT CDCL3
EXREF 27.0 C
BF 0.77 H
RGAIN 32
XE 25153.0600 H
XS 2420.3170 H 21-FEB-03 02: 30: 53 DFILE TH5CSN 15308.7 Hz
65536
31250.0 Hz
1200
1.049 sec
0.700 sec
5.6 us
10157.0 Hz
25
50 us

24-MAR-03 10: 43: 35
DFILE TH5CSN
COMNT TH5: 13C-S/N-EXMOD SGBCM
OBRUC 13C
OBFIN 15308.7 Hz
POINT 65536
FREQU 31250.0 Hz
SCANS 1200
ACGTM 1.049 SEC
PD 0.700 SEC
PM 1 5.6 US
IRFIN 10157.0 Hz
IRATN 33
IRATN 33
IRATN 30
EXREF 27.0 C
SLVNT CDCL3
EXREF 77.00 ppm
BF 0.77 Hz
RGAIN 31
XE 25153.0600 Hz
Z5153.0600 Hz